DATACUBE

A Scaleable, Fault
Tolerant Data Ser ver

Noah Mendelsohn
Lotus Development / IBM
10/27/2000

Agenda

= Project History

= Goals and Hardware Overview
m Software Overview

= Fault Tolerance

m Conclusions

Project History

History

= Milestones:
» 19867: Project initiated
» 1990: Hardware/software simulator
» 1900-1992: Hardware/software prototype operational
» July 1992: IBM Cambridge & LA Scientific Centers
close, project ends

= Publications
» ASPLOS work (not) in progress talk, fall 1992
» Several patents

= Vlost details of system remain unpublished

Participants

= Sandy Frey = Ricky Mosteller
= Joel Gould = Rip Parmelee
= Tom Hancock = Jim Perchik

= John (Kubi) = Ernie Petrides
Kublatowicz = Bill Ruh

= Neal Lackritz = Dave Saul
= George Linscott = Jim Sullivan
= Noah Mendelsohn

(All participants were regular, part time or contract employees
of IBM during their work on the Datacube project.)

Goals and Hardware Overview

Project Goals

= |[nvestigate massively parallel business
system architectures

= Strong focus on fault tolerance

= |[nvestigate design & performance of
required software

m Scaleable, fault tolerant, continuously
available, hardware interconnect

m Focus on realistic maintenance and
deployment issues

A DATACUBE NODE

The DATACUBE Parallel
Data Server

A Datacube Node

Datacube
Server

Datacube System Overview

= Message passing MIMD computer

(shared nothing) each node has:

> Inexpensive processor
» RAM

» Disk

» Switch

» NVRAM (optional)

» LAN attach (optional)

= Fault tolerant, adaptive, 4-D torus,
distributed switch

= All elements of system scale together

Switch Hardwar e

m 4 dimensional Taurus

= Distributed routing hardware (on nodes)

= Adaptive real-time path search in hardware

= 3.6 Mbyte/sec/node full duplex, approx 60

usec latency (Xilinx prototy

ne)

= 10x Improvement projectec
single chip VLSI

for Inexpensive

Remember, this was ~1988

Software Overview

The Datacube Prototype:
Softwar e Featur es

= Unix kernel-based prototype

= Communications
» Communication/disk buffer integration: zero copy disk
cache update & access
» |P packet switching

= RAID-1 (mirror) and RAID-3&5 virtual disk
» Appears as large, common disk at all nodes
» Optimized for 1:1 interleave...adaptive RAID 5/RAID 3
» Faults hidden from surviving nodes
» Distributed caching

= Distributed Unix filesystem

m Scaleable distributed reconfiguration
algorithms

Datacube Softwar e

User User User
Program Program Program

Unix Unix Unix
Filesystem Filesystem Filesystem

aouela|0]
ne4

‘unwwo)d

Distributed Filesystem Coherence
Enforcement .

I
Logical

Buliojluon
aouew.ojlad

| Logical
Cache i Cache
! |
! \
\ \

Big,shared,

Fault-tolerant, ——j
Virtual Disk

Datacube Softwar e

User User User
Program Program Program

Unix Unix Unix
Filesystem Filesystem Filesystem

aouela|0]
Hne4

Distributed Filesystem Coherence
Enforcement .

g

Logical | Logical Logical

uolediunwwo)d

Cache Cache Cache

g 0 !

Distributed RAID-5 Management I

g g)

Physical Physical Physical
Cache Cache Cache

i

Buliojluon
aouew.lojlad

-
__

Fault Tolerance

Fault tolerance model

= Hardware
» Hot pluggable nodes, redundant power, etc.
» Passive backplane (power, ground, torus wiring)
» Hardware provides fault tolerant message routing
» Failstop on all errors

= Software
» Nodes fail and are replaced by warm standby spares
» Distributed reconfiguration algorithms
» Raid (1,3,5) reconstruction of disk, nvram

Reconfiguration software

= Simulates stable virtual node space
» Spares replace failed nodes, routing tables updated
» Nodes appear to pause for ~2 seconds on failure
» Performance degraded during RAID reconstruction,
filesystem token resync, etc.

= Anticipates realistic failure statistics
(almost any 2 nodes at a time)

m Correctly rejects old nodes that reappear
Including after reboot

m Distributed algorithm simulated on
thousands of nodes, tested on hardware

Dynamic node r eplacement

Low
—— Spare

__ Next lowest
spare

18 _____High (replaces
node 12)

/ QeS

ZN Z

1 4 o) 13
7 N\ 7 N\ 7 N\ 7 N\
2 3 5 6 10 11 14 15

Performance

Performancetools

= Real time displays of low level software
Instrumentation

= | 0ogging of same

= Kernel event tracing...post-facto clock
correlation reproduces virtual time
(causality) in face of local clock drift

= Complete software emulator for
switch...software stack run on emulator

= Analytical models

Realtime per for mance monitor

DATACUBE PERFORMANCE DETAILS

Per Node Statistics

SWITCH RECV

1000

SWITCH RECV

Softwar e Per for mance

= Message send:
» 2250 instruction times for full kernel to kernel RPC
round-trip (1500 usec at 1.5 Mip, incl. buffer allocation,
gueueing, interrupts, etc.)

= Parallel Filesystem (4K byte block size):.

» Non cached/sequential access: 630 KBytes/sec/drive
= 156 blocks/sec (drive & controller limited, same as
single node system)

» Non caching/random access: 130 Kbytes/sec/drive =
42.5 blocks/sec (drive limited, same as single node
system)

» Cache hits through filesystem & switch: 3.2
Mbyte/sec/filesys-node 800 blocks/sec (cpu limited -
89% of node's switch bandwidth!)

Modd: Msg. ratevs. msg. size

Messages/sec

Il Il Il Il
T T T T

16384 24576 32768 40960

Message Size

Switch Speed | Driver Latency |Switch Latency | Max CPU in Switch Driver

Prototype 3.6 MB/sec 750 usec 50 usec 25 %

Product 10 MB/sec 375 usec 26 usec 20 %

Msgs per second = 1 / MAX(Driver Latency/Max CPU, Switch Latency + Message size/Switch Speed)

Bytes per second = Messages per second x Message Size

Moddl: Bytes/sec vs. msg. size

12,000,000 -

10,000,000 A

8,000,000 -

6,000,000 -

Prototype

4,000,000 -

2,000,000 A

Il Il Il Il
T T T T

16384 24576 32768 40960
Message Size

Switch Speed | Driver Latency |Switch Latency | Max CPU in Switch Driver

Prototype 3.6 MB/sec 750 usec 50 usec 25 %
Product 10 MB/sec 375 usec 26 usec 20 %

Msgs per second = 1 / MAX(Driver Latency/Max CPU, Switch Latency + Message size/Switch Speed)

Bytes per second = Messages per second x Message Size

Conclusions

m Datacube Successes

» The Datacube model of fault tolerance has attractive
features

» Specialized hardware/software integrating message
passing with disk cache is very effective

» Datacube style hardware Is very easy to engineer and
Implement

» Datacube is both scaleable and economical

m Datacube Disadvantages
» Software is difficult to scale--programming these
machines is difficult!
» Assumption of uniform nodes is unrealistic
» Specialized architecture--difficult to share hardware
and software with general purpose machines

Controversial | deas!

= Massively parallel systems must be fault
tolerant

= \We need software tools for parallel
system development (you can't write
filesystems in FORTRAN-D!)

= Designing message switch interfaces
Involves the same kind of
hardware/software tradeoffs as designing
Instructions sets

