
Noah Mendelsohn
Lotus Development Corp.

October 8, 1997

Components:
How Far Can We Go?

OBJECT:
A thing

COMPONENT:
A thing designed to be used as part of

other things

Objects and Components

Consider...

ƒWhat makes a good component?

ƒHow much software can we/should we
componentize?

ƒWhich things shouldn't be components?

Some Observations
about Mechanical and
Software Components

Special Purpose vs. General Purpose
ƒMost real-world components are special

purpose (look around!)

ƒSpecial purpose parts can still be
components...why:

Generic tools & assembly techniques
Repair, replacement, versioning
Mulitple instances, one application

ƒStructure most software as components

General Purpose Components
ƒGeneral purpose parts exceptionally

valuable.

ƒExamples:

Utility items (screws, bolts, wires, UI widgets,
DB access parts, etc.)
Systems of components (pipes & fittings,
electrical conduit, etc.)

ƒStandardization & specification

ƒTry to create general purpose components

The interface is bigger than you think

ƒExplicit API: what you think you're doing

ƒImplicit API: everything else that breaks if
you get it wrong
Error Handling
Memory Usage,
....I won't close the file
Asynchrony
etc.

ƒThe answer: carefully specify explicit and
implicit API

Interchangeability vs. Refinement

ƒBoeing 757

Cabin: almost all parts are special purpose
Under the skin: wires, screws, clamps, etc.

ƒSeamless user interfaces demand refined
componentry. Therefore...

ƒ...end user components less interchangeable
than hidden components

Raw materials vs. components
ƒRaw materials:
Cloth
Wood (finished or unfinished)
Leather
Metal
etc.

ƒSoftware "raw materials":
Tailorable components
Filters
Delegates

How big is the "nerve bundle"?

Demo

How big is the "nerve bundle"?
ƒSpell checker UI component has complex

relationship to WordPro application
UI Integration
Asynchrony
Etc.

ƒDictionery has simple interface: easy to
replace

ƒConclusion: look for the narrow "nerve
bundles"

ƒFunctional decomposition

Spell check UI vs. Dictionery
Example: HTML Rendering vs. Web Browsing

ƒModel/view separation

ƒBusiness object/business logic

ƒWhere appropriate, subdivide your
componentry

There are (should be) more
components than you think

How far can we go?
ƒShould all software be componentry?

ƒWhat granularity?

Every class a component?
Packaging
Registration
Instantiation overhead
Component vs. object

ƒPackage as componentry in cases where
reuse and generic mgmt. justifies the cost

Conclusions

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

