
Noah Mendelsohn
Lotus Development Corp.

October 8, 1997

Components:
How Far Can We Go?

OBJECT:
A thing

COMPONENT:
A thing designed to be used as part of

other things

Objects and Components

Consider...

ƒWhat makes a good component?

ƒHow much software can we/should we
componentize?

ƒWhich things shouldn't be components?

Some Observations
about Mechanical and
Software Components

Special Purpose vs. General Purpose
ƒMost real-world components are special

purpose (look around!)

ƒSpecial purpose parts can still be
components...why:

Generic tools & assembly techniques
Repair, replacement, versioning
Mulitple instances, one application

ƒStructure most software as components

General Purpose Components
ƒGeneral purpose parts exceptionally

valuable.

ƒExamples:

Utility items (screws, bolts, wires, UI widgets,
DB access parts, etc.)
Systems of components (pipes & fittings,
electrical conduit, etc.)

ƒStandardization & specification

ƒTry to create general purpose components

The interface is bigger than you think

ƒExplicit API: what you think you're doing

ƒImplicit API: everything else that breaks if
you get it wrong
Error Handling
Memory Usage,
....I won't close the file
Asynchrony
etc.

ƒThe answer: carefully specify explicit and
implicit API

Interchangeability vs. Refinement

ƒBoeing 757

Cabin: almost all parts are special purpose
Under the skin: wires, screws, clamps, etc.

ƒSeamless user interfaces demand refined
componentry. Therefore...

ƒ...end user components less interchangeable
than hidden components

Raw materials vs. components
ƒRaw materials:
Cloth
Wood (finished or unfinished)
Leather
Metal
etc.

ƒSoftware "raw materials":
Tailorable components
Filters
Delegates

How big is the "nerve bundle"?

Demo

How big is the "nerve bundle"?
ƒSpell checker UI component has complex

relationship to WordPro application
UI Integration
Asynchrony
Etc.

ƒDictionery has simple interface: easy to
replace

ƒConclusion: look for the narrow "nerve
bundles"

ƒFunctional decomposition

Spell check UI vs. Dictionery
Example: HTML Rendering vs. Web Browsing

ƒModel/view separation

ƒBusiness object/business logic

ƒWhere appropriate, subdivide your
componentry

There are (should be) more
components than you think

How far can we go?
ƒShould all software be componentry?

ƒWhat granularity?

Every class a component?
Packaging
Registration
Instantiation overhead
Component vs. object

ƒPackage as componentry in cases where
reuse and generic mgmt. justifies the cost

Conclusions

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

